博客
关于我
R-CNN算法
阅读量:577 次
发布时间:2019-03-10

本文共 1386 字,大约阅读时间需要 4 分钟。

  R-CNN算法可以说是利用深度学习进行目标检测的开山之作。2012年AlexNet网络在ImageNet LSVRC中效果显著,因此R-CNN的作者想要尝试将AlexNet在图像分类上的能力迁移到PASCAL VOC的目标检测上。这就要解决两个问题:

  • 如何利用卷积网络去进行目标定位;
  • 如何在小规模的数据集上训练出较好的网络模型。

  对于利用卷积网络去进行目标定位的问题,R-CNN利用候选区域(Region Proposal)的方法,这也是该网络被称为R-CNN的原因:Regions with CNN features。对于小规模数据集的问题,R-CNN使用了微调的方法,利用AlexNet网络在ImageNet上预训练好的模型。

  R-CNN算法步骤

  1. 输入一张图像生成1K~2K个候选区域(使用Selective Search方法);
  2. 对于每个候选区域,使用深度网络提取特征(CNN);
  3. 提取的特征送入每一类的SVM分类器,判别是否属于该类(SVM);
  4. 使用回归器精细修正候选框的位置(Regression)。

在这里插入图片描述

step1:候选区域的生成
  利用selective Search算法,通过图像分割的方法,得到一些原始区域,然后使用合并策略将这些区域合并,得到一个层次化的区域结构,而这些结构就包含着可能需要的物体。

在这里插入图片描述

step2:对每个候选区域,使用深度卷积神经网络提取特征
  将2000候选区域缩放为227×227的大小,接着将候选区域输入到预训练好的AlexNet CNN网络获取4096维的特征得到2000×4096维矩阵。

在这里插入图片描述

step3:提取的特征送入每一类的SVM分类器,判定类别
  将2000×4096维特征与20个SVM组成的权值矩阵4096×20相乘,得到2000×20维矩阵表示每个候选框是某个目标类别的得分。分别对上述2000×20维矩阵中每一列即每一类进行非极大值抑制剔除重叠候选框,得到该列即该类中得分最高的一些候选框框。
  非极大值抑制步骤:寻找得分最高的目标;计算其他目标与该目标的IoU(交并比)值;删除所有IoU值大于给定阈值的目标。

在这里插入图片描述

在这里插入图片描述
step4:使用回归器精细修正候选框位置
  对NMS处理后剩余的候选框进一步筛选。接着分别用20个回归器对上述20个类别中剩余的候选框进行回归操作,最终得到每个类别的修正后的得分最高的bounding box。
  如图,黄色框口 P P P表示建议框Region Proposal,绿色窗口 G G G表示实际框Ground Truth,红色窗口 G ^ \hat{G} G^表示Region Proposal进行回归后的预测窗口,可以用最小二乘法解决的线性回归问题。

在这里插入图片描述

  R-CNN存在的问题

  1. 测试速度慢:测试一张图片约53s (CPU)。用Selective Search算法提取候选框用时约2秒,一张图像内候选框之间存在大量重叠,提取特征操作冗余。
  2. 训练速度慢:过程极其繁琐。
  3. 训练所需空间大:对于SVM和bbox回归训练,需要从每个图像中的每个目标候选框提取特征,并写入磁盘。对于非常深的网络,如VGG16,从VOCO7训练集上的5k图像上捉取的特征需要数百GB的存储空间。
  4. SVM分类器和边框回归器的训练过程,和CNN提取特征的过程是分开的,并不能进行特征的学些更新。

转载地址:http://tqfvz.baihongyu.com/

你可能感兴趣的文章
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_根据binlog实现数据实时delete同步_实际操作04---大数据之Nifi工作笔记0043
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_生成插入Sql语句_实际操作02---大数据之Nifi工作笔记0041
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_03_来吧用NIFI实现_数据分页获取功能---大数据之Nifi工作笔记0038
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_不带分页处理_01_QueryDatabaseTable获取数据_原0036---大数据之Nifi工作笔记0064
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_无分页功能_02_转换数据_分割数据_提取JSON数据_替换拼接SQL_添加分页---大数据之Nifi工作笔记0037
查看>>
NIFI从Oracle11G同步数据到Mysql_亲测可用_解决数据重复_数据跟源表不一致的问题---大数据之Nifi工作笔记0065
查看>>
NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
查看>>
nifi使用过程-常见问题-以及入门总结---大数据之Nifi工作笔记0012
查看>>
NIFI分页获取Mysql数据_导入到Hbase中_并可通过phoenix客户端查询_含金量很高的一篇_搞了好久_实际操作05---大数据之Nifi工作笔记0045
查看>>
NIFI分页获取Postgresql数据到Hbase中_实际操作---大数据之Nifi工作笔记0049
查看>>
NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
查看>>
NIFI同步MySql数据源数据_到原始库hbase_同时对数据进行实时分析处理_同步到清洗库_实际操作06---大数据之Nifi工作笔记0046
查看>>
Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
查看>>
【Flink】Flink 1.9 版本 web UI 突然没有日志
查看>>
NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
查看>>
NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_处理器介绍_处理过程说明---大数据之Nifi工作笔记0019
查看>>
NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_实际操作---大数据之Nifi工作笔记0020
查看>>
NIFI大数据进阶_Json内容转换为Hive支持的文本格式_实际操作_02---大数据之Nifi工作笔记0032
查看>>